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Abstract

In this paper, we focus on the computation of stress resultants of a floating elastic plate using the Mindlin plate

theory. The proposed method makes use of the linear wave theory and shallow-draft assumption. However, the usual

Kirchhoff theory is replaced by the Mindlin theory for the plate. For a single frequency, the coupled water-plate

problem is solved using a higher-order-coupled finite element–boundary element method. The solutions for the stress-

resultants computed using the proposed method are more satisfactory than these based on the Kirchhoff plate theory.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

A mat-like floating body on water where the thickness is far smaller than its length and width is usually modelled as a

floating elastic plate. This is because a body with such geometry is very flexible and this results in elastic deformations

due to wave forces. Examples of this type of floating elastic plate are ice floes (Squire et al., 1995) and pontoon-type very

large floating structures (VLFS) (Watanabe et al., 2004). In any case, the floating elastic plate is restricted against

horizontal motion but allowed to deform vertically with the waves.

The water motion is represented by its velocity potential and is solved using the linear potential theory. The plate is

commonly regarded as a thin elastic plate with free-edges and zero-draft. The classical thin plate theory or Kirchhoff

(1850) plate theory is commonly used to describe its motion. There are a number of ways to solve the coupled water-

plate motions. To name a few, we take the example of Kashiwagi (1998) who used a combination of the pressure-

distribution and mode expansion methods, where the numerical solution was given by way of B-spline functions and the

Galerkin method. Another example is the method proposed by Hermans (2000) and Meylan (2002) where the boundary

element method (BEM) is used to represent the velocity potential and the finite element method (FEM) for the thin

plate of arbitrary geometry. Other methods are explained in detail in publications by Kashiwagi (2000) and Watanabe

et al. (2004).

There are a couple of weaknesses in the conventional approaches used thus far, namely, the assumption of zero-draft

and negligible thickness of the plate in the Kirchhoff theory. The former has been improved in a number of publications
e front matter r 2008 Elsevier Ltd. All rights reserved.
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such as Utsunomiya et al. (1998). The improvement of the latter is the goal of this paper. The aforementioned methods

(based on zero-draft) aimed primarily to determine the displacement and rarely the stress resultants. Yet the stress

resultants are equally essential in checking and designing for the plate strength (e.g. the von Mises stresses in the plate).

The stress resultants, however, cannot be accurately calculated using the Kirchhoff plate theory, though the

displacements produced are sufficiently accurate. This inaccuracy is caused by, first, the restrictions in the Kirchhoff

plate theory. This neglects the effects of transverse shear deformation and rotary inertia of the plate that become

significant when the elastic wavelength is less than 20 times the thickness or when the thickness/length ratio is greater

than 0.005 (Mindlin, 1951). Second, the numerical calculation of the moments and shear forces in the Kirchhoff plate is

not accurate, since the stress resultants depend on the second and the third derivatives of the displacement w, where w is

usually some approximation function. This inadequacy is particularly serious when FEM is employed, because of the

polynomial functions used to approximate the displacement. Therefore, in order to obtain a more accurate calculation

of the plate deformation, the first-order shear deformation plate theory (also known as Mindlin plate theory) is

proposed. The Mindlin theory allows for the effect of transverse shear deformation and rotary inertia, and the stress

resultants are expressed as, at most, first derivatives of plate displacements and rotations.

Recently, Watanabe et al. (2006) gave an analytical method to model the hydroelastic responses of a circular plate

based on the Mindlin plate theory. Although it is a useful benchmarking tool, it is rather difficult to extend the method

to cope with non-circular plates. For this reason, in this paper, we present a method based on the Mindlin plate theory

for a rectangular plate of shallow draft. This method is an extension of the one developed by Wang and Meylan (2004),

which uses a hybrid finite element–boundary element (FE–BE) method.

In this paper, the equations of plate and water motions are explained in Section 2 together with the assumptions used.

In Section 3, the displacement and rotations of the plate with free-edges are solved using the FEM. These are then

coupled with the integral equation of the velocity potential of the water using the linearised pressure equation that is

defined on the contact surface between the plate and the water surface. Here, an interpolation of the strain functions is

introduced to overcome the limitation of the chosen four-node FEM shape function. In Section 4, we present the results

for the displacement and rotations of the plate. As a check, we compare the displacements computed using Mindlin and

Kirchhoff plate theories as well as the moments and shear forces. We also show convergence tests for the size of

elements used to discretise the plate. Finally, we present several results on displacements, moments, and shear forces.
2. Equations of plate and water motion

Although a pontoon-type floating structure on water is a three-dimensional object, we may capture its properties by

considering it as a plate. In this case, we assume that the arbitrarily shaped plate covers, partially or entirely, an area of
Ω

Δ

θ

Fig. 1. Schematic diagram of the plate and the water domain.
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4LB, has thickness h, and has no submerged part (see Fig. 1). The water underneath the plate is assumed to be an

inviscid and incompressible fluid with irrotional motions such that a velocity potential exists. The water domain O is

infinite in the x and y directions, but bounded above by the water surface z ¼ 0 and below by the seabed z ¼ �H.

2.1. Equations of plate motion

We adopt the Mindlin plate theory to describe the plate motion. For simplicity, we shall assume that the plate is

rectangular. However, the following formulation is also applicable for plates of any geometry.

The plate motion is described by the plate displacement W ðx; y; tÞ and two plate rotations Cxðx; y; tÞ and Cyðx; y; tÞ.
Then motion of the plate is governed by the following three simultaneous equations (Liew et al., 1998):

k2Gh r2W þ
qCy

qx
�

qCx

qy

� �
þ rph

q2W

qt2
¼ �rw

qF
qt

� ����
z¼0

þ gW

�
, (1a)
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where Fðx; y; z; tÞ is the linear velocity potential of the water, rw the water density, rp the plate density, G ¼ E=½2ð1þ nÞ�
the shear modulus, D ¼ Eh3=½12ð1� n2Þ� the flexural rigidity, E the modulus of elasticity, n the Poisson ratio, and k2 the
shear correction factor. Note that as the thickness h becomes small, the terms Cx ! qW=qy and Cy ! qW=qx and the

governing equations of motion reduce to that of the classical thin plate theory when the rotary inertia terms are

neglected as well.

The free-edge boundary conditions state that the bending and twisting moments and the shear forces must vanish at

the edges of the plate. Therefore,

Mnn ¼ 0; Mns ¼ 0; Qn ¼ 0, (2)

where Mnn and Mns are the bending and twisting moments given by

Mnn ¼ D
qCs

qn
� n

qCn

qs

� �
; Mns ¼

Dð1� nÞ
2

qCs

qs
�
qCn

qn

� �
(3a,b)

and Qn is the shear force given by

Qn ¼ k2Gh
qW

qn
�Cs

� �
, (4)

with nðx; yÞ and sðx; yÞ being, respectively, the normal and tangential directions to the edges of the plate.

2.1.1. Nondimensionalisation

We nondimensionalise the spatial variables with respect to characteristic length L and time variables with respect toffiffiffiffiffiffiffiffi
L=g

p
such that

x ¼ Lx̄; y ¼ Lȳ; z ¼ Lz̄; W ¼ LW̄ (5a)

and

t ¼

ffiffiffiffi
L

g

s
t̄; F ¼ L

ffiffiffiffiffiffi
Lg

p
F̄. (5b)

Note that Cx and Cy are the plate rotations and hence they are dimensionless.

2.1.2. Reduction to single frequency problem

We now consider the problem at a single frequency which allows us to represent the time-dependence by expð�iot̄Þ,

where o is the dimensionless angular frequency. Thus the displacement, the rotations and the potential can be written as

W̄ ðx̄; ȳ; t̄Þ ¼ wðx̄; ȳÞe�iot̄; C̄xðx̄; ȳ; t̄Þ ¼ cxðx̄; ȳÞe
�iot̄; C̄yðx̄; ȳ; t̄Þ ¼ cyðx̄; ȳÞe

�iot̄
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and

Fðx̄; ȳ; z̄; t̄Þ ¼ fðx̄; ȳ; z̄Þe�iot̄.

Therefore Eqs. (1a)–(1c) become

b
6k2ð1� nÞ
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2

r2wþ
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qx̄
�
qcx

qȳ

� �
� o2g1w ¼ iof� w, (6a)
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where b, g1, and g2 are dimensionless variables given by Tayler (1986)

b ¼
D

rwgL4
; g1 ¼

rph

rwL
; g2 ¼

rph3

12rwL3
¼

h̄
2

12
g1. (7)

Thereafter, we drop the overbar for simplicity.

2.2. Equations of water motion

Following Stoker (1957) and Wehausen and Laitone (1960), the velocity potential of the water fðx; zÞ is described by

the Laplace equation

r2f ¼ 0; ðx; zÞ 2 O, (8)

with boundary conditions

qf
qz
¼ o2f; xeD; z ¼ 0, (9)

qf
qz
¼ 0; �1oxo1; z ¼ �H ;

rf! 0; �1oxo1; z!�1;

9=
; (10)

where x ¼ ðx; yÞ.
At infinity, the boundary condition is given by the Sommerfeld radiation condition (Wehausen and Laitone, 1960)

lim
jxj!1

ffiffiffiffiffiffi
jxj

p q
qjxj
� ik

� �
ðf� fIn

Þ ¼ 0, (11)

where fIn
ðx; zÞ is the incident potential which is the solution of boundary value problem posed by Eqs. (8)–(10). At

z ¼ 0, the incident wave is given by

fIn
ðxÞ ¼

A

o
eikðx cos yþy sin yÞ, (12)

with A the dimensionless wave amplitude and y the angle of incidence. The wavenumber k is related to the wavelength l
by

l ¼
2p
k

(13)

and to the frequency o by the dimensionless dispersion equation

o2 ¼ k tanhðkHÞ, (14)

where, as H !1, we obtain

o2 ¼ k. (15)
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Conventionally, the linear wave potential fðx; y; zÞ is solved using the BEM. This is done by transforming Laplace

equation (8) with boundary conditions (9)–(11) into an integral equation involving a free-surface Green’s function. The

resulting integral equation is

fðxÞ ¼ fIn
ðxÞ þ

Z
D

Gðx; nÞ½o2fðnÞ þ iowðnÞ�dn, (16)

where n ¼ ðx; ZÞ and Gðx; nÞ is a free surface Green’s function given by

Gðx; nÞ ¼ �
X1
j¼0

K0ðkjjx� njÞ
2pCj

cos2ðkjHÞ, (17)

if z ¼ �H (Wehausen and Laitone, 1960; Mei, 1982; Linton, 1999) and

Gðx; nÞ ¼
1

4p
2

jx� nj
� po2½H0ðo2jx� njÞ þY0ðo2jx� njÞ � 2iJ0ðo2jx� njÞ�

� 	
, (18)

if z ¼ �H !�1 (Wehausen and Laitone, 1960). In Eq. (18), H0, J0, and Y0 are, respectively, the Struve function, the

first kind, and the second kind Bessel functions where all are of order zero. In Eq. (17), K0 is the second kind modified

Bessel function (Abramowitz and Stegun, 1964) and kj are the roots of the dispersion equation that are related to the

angular frequency by equation

�kj tanðkjHÞ ¼ o2; j40. (19)

If j ¼ 0, from Eq. (14), k0 clearly becomes k0 ¼ ik, where k is the wavenumber. The constants Cj are given by

Cj ¼
H

2
1þ

sin 2kjH

2kjH

� �
. (20)
3. Numerical solution

3.1. Application of Finite Element Method

A variational equation equivalent to Eqs. (6a)–(6c) is given by the Hamiltonian principle involving the plate energy

functionals (Liew et al., 1998); that is

d
Z tf

t0

ðU � T þW Þdt ¼ 0. (21)

The potential energy function U and the kinetic energy function T are, respectively, given by

U ¼
1

2

Z
D
ðfegT½Bf �feg þ fggT½Bs�fggÞdx, (22)

T ¼
1

2
o2

Z
D
½g1w2 þ g2ðc

2
x þ c2

yÞ�dx (23)

and the work done W is given by

W ¼

Z
D

w iof�
1

2
w

� �
dx. (24)

In Eq. (22), the feg and fgg represent the plate’s section curvature and shearing strain, respectively (Bathe and

Dvorkin, 1985),

feg ¼

qcy

qx

�
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qy
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qy
�
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8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
; fgg ¼

qw

qx
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qw

qy
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8>><
>>:

9>>=
>>;; (25)
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while matrices ½Bf � and ½Bs� are

½Bf � ¼ b

1 n 0

n 1 0

0 0
1� n
2

2
664

3
775; ½Bs� ¼ 6b

k2ð1� nÞ

h̄
2

1 0

0 1

� �
. (26a,b)

Since we have assumed that the problem is solved for a single frequency, Eq. (21) becomes
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dx�
1
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o2d
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fg1w2 þ g2½ðcxÞ

2
þ ðcxÞ

2
�gdx

¼ iod
Z
D
fwdx�

1

2
d
Z
D

w2 dx. (27)

Following the FEM, we discretise the plate using p rectangular elements which each has area of 4ab. Then we

approximate the displacement w and rotations cx and cy using a set of polynomials wj such that

w ¼
Xp

d¼1

wd ðxÞŵd ; cx ¼
Xp

d¼1

wd ðxÞĉx;d ; cy ¼
Xp

d¼1

wd ðxÞĉy;d . (28)

Similarly, we also approximate the potentials fin and f using the same set of polynomials wj

fIn
¼
Xp

d¼1

wd ðxÞ f̂
In

d ; f ¼
Xp

d¼1

wd ðxÞ f̂d , (29)

where wd is related to the FEM basis functions Ni by

wd ðxÞ ¼
Xqd

i¼1

odi NiðxÞ. (30)

The constants odi weigh element Dd , which encloses x, with respect to the plate (Wang and Meylan, 2004). The

summation is taken over the number of nodes qd in element Dd where the shape function Ni is defined. We choose shape

function Ni to be the linear serendipity function which is defined at four corners (nodes) of the element Zienkiewicz

(1977),

NiðxÞ ¼ ð1þ xixÞð1þ ZiZÞ; i ¼ 1; . . . ; 4, (31)

where ðx; ZÞ ¼ ðx=a; y=bÞ for a rectangular element of area 4ab and ðxi; ZiÞ is the coordinate of the ith node of Dd .

Moreover, for p rectangular elements that discretize the plate, we have a total of q nodes. Constants ŵd , ĉx;d , and ĉy;d

are, respectively, the displacement and rotations of the nodes of element d (Wang and Meylan, 2004). Note that the

aforementioned formulation can easily be extended to arbitrary quadrilateral elements with corresponding shape

functions.

3.2. Solution for coupled plate-water motion

We minimise Eq. (27) with respect to ŵe, cx;e, and cy;e and solve the resulting equations locally for each element Dd .

By taking x to correspond to the nodes of the plate we arrive at

fbðKf þKsÞ þM� � o2Mgŵ ¼ ioM�f̂, (32)

where

Ks ¼
Xp

d¼1

½o�Td ½k
s
�d ½o�d ; Kf ¼

Xp

d¼1

½o�Td ½k
f
�d ½o�d (33)

and

M ¼
Xp

d¼1

½o�Td ½m�d ½o�d ; M� ¼
Xp

d¼1

½o�Td ½m
��d ½o�d , (34)



ARTICLE IN PRESS
C.D. Wang, C.M. Wang / Journal of Fluids and Structures 24 (2008) 1042–10571048
ŵ ¼
Xp

d¼1

½o�Td ½ŵ�d ; f̂ ¼
Xp

d¼1

½o�Td ½f̂�d . (35)

Matrices Kf and Ks are, the stiffness matrices due to flexure and shear, respectively. Matrices M and M� are the mass

matrices. Vector f̂ represents the force exerted upon the plate by water where it satisfies the following equation:

M�f̂ ¼M�f̂
In
þ o2Gf̂þ ioGŵ, (36)

where G is the Green matrix containing the free-surface Green’s function as defined by Eqs. (17) and (18) and is given

by Wang and Meylan (2004)

G ¼
Xp

d¼1

Xp

e¼1

½o�Td ½g�de½o�e. (37)

All matrices are of dimension 3q� 3q and each is composed of 12� 12 elemental matrices. Constant vector ½ŵ�d
contains the nodal displacement and rotations and has the form

fŵgTd ¼ fw1;cx;1;cy;1;w2;cx;2;cy;2;w3;cx;3;cy;3;w4;cx;4;cy;4g
T, (38)

with dimension 3q� 1. Vector ½f̂� contains the potential defined at each node and is given by

ff̂gTd ¼ ff1; 0; 0;f2; 0; 0;f3; 0; 0;f4; 0; 0g
T. (39)

The assembling matrix ½o�d is given in Wang and Meylan (2004).

With the exception of ½ks
�d , the elemental matrices ½kf

�d , ½m
��d , ½m�d , and ½g�de follow the standard FEM procedure as

given by Zienkiewicz (1977) and Wang and Meylan (2004). Each 3� 3 submatrix of ½kf
�d ; ½m

��d , ½m�d , and ½g�de are given

by

½k
f
ij �d ¼

Z
Dd

0 0 0

0
qNi

qx

qNj

qx
þ

1� n
2

qNi

qy

qNj

qy
� n

qNi

qx

qNj

qy
þ

1� n
2

qNi

qy

qNj

qx

� �

0 � n
qNi

qy

qNj

qx
þ
1� n
2

qNi

qx

qNj

qy

� �
qNi

qy

qNj

qy
þ
1� n
2

qNi

qx

qNj

qx

2
666664

3
777775dx, (40)

½mij �d ¼

Z
Dd

g1NiNj

g2NiNj

g2NiNj

2
64

3
75dx; ½m�ij �d ¼

Z
Dd

NiNj

0

0

2
64

3
75dx (41a,b)

and

½gij �de ¼

Z
Dd

Z
De

Niðxd ÞGðxd ; neÞNjðneÞ

0

0

2
64

3
75dndx, (42)

where i; j ¼ 1; . . . ; 4 and ðxd Þ and ðxeÞ correspond, respectively, to source panel Dd and field panel De. We integrate Eqs.

(40), (41a,b) exactly, while the integrations over elements Dd and De in Eq. (42) are solved using the Gauss–Legendre

quadrature (Wang and Meylan, 2004). Notice that ½kf
�d is derived from the product involving feg in Eq. (22) while ½m�d

comes from the kinetic energy functional T in Eq. (23) and ½m��d and ½g�de are from W in Eq. (24). However, ½ks
�d will

not be derived directly from the product of fgg in Eq. (22). This will be discussed in the next part.

3.2.1. Computation of stiffness matrix due to shear

Submatrix ½ks
�d must be computed differently due to a common problem encountered when using the four-node

elements in the computation of the transverse shear strains of a Mindlin plate. The reason is that the approximation of

Eq. (28) with the given shape function, given by Eq. (31), in Eq. (48) is inaccurate as h! 0 because the four-node

element discretisation is unable to capture the vanishing transverse shear strains at the edges of the plate despite the fact

that Eq. (27) contains Kirchhoff’s thin plate formulation (Bathe and Dvorkin, 1985; Zienkiewicz, 1977). To resolve this

problem, we follow the method developed by Bathe and Dvorkin (1985).

Instead of computing ½ks
�d directly from fgg in Eq. (22) or the second term of Eq. (27), we interpolate the shear strain

on individual elements and use an approximation. The interpolation is done in the following way. First, we define the

nodes of an element, say Dd , to be q
ðdÞ
1 ¼ ð�1;�1Þ, q

ðdÞ
2 ¼ ð�1; 1Þ, q

ðdÞ
3 ¼ ð1;�1Þ and q

ðdÞ
4 ¼ ð1; 1Þ, as shown in Fig. 2. We
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Fig. 2. Diagram of panel.
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also define a set of mid-points A, B, C, and D at, respectively ð�1; 0Þ, ð0; 1Þ, ð1; 0Þ, and ð0;�1Þ. Then, using the definition

of fgg in Eq. (25), the shear strain at an arbitrary point X enclosed by Dd is given by

gðX Þxz ¼
qw

qx

����
X

þ cyjX ; gðX Þyz ¼
qw

qy

����
X

� cxjX , (43)

where qw=qx, qw=qy, cx, and cy are approximated using Eq. (28).

Next we introduce the following interpolations for gðX Þxz and gðX Þyz using the components of Eq. (43):

fgg ¼
gxz

gyz

( )
¼

1

2
ð1þ ZÞgB

xz þ
1

2
ð1� ZÞgD

xz

1

2
ð1� xÞgA

yz þ
1

2
ð1þ xÞgC

yz

8>><
>>:

9>>=
>>;, (44)

where gA
yz, g

B
xz, g

C
yz, and gD

xz are computed using Eq. (43) and ðx; ZÞ ¼ ðx=a; y=bÞ. By substituting Eq. (43) into Eq. (44), we

obtain

gxz

gyz

( )
¼

1

2
ð1þ ZÞ

w4 � w2

2
þ
cy;4 þ cy;2

2

� �
þ

1

2
ð1� ZÞ

w3 � w1

2
þ

cy;3 þ cy;1

2

� �
1

2
ð1� xÞ

w2 � w1

2
þ

cx;2 þ cx;1

2

� �
þ

1

2
ð1þ xÞ

w4 � w3

2
þ

cx;4 þ cx;3

2

� �
8>>><
>>>:

9>>>=
>>>;
. (45)

Using the standard FEM procedure, we may write Eq. (45) as

fgg ¼ ½cs�fŵgd , (46)

where fŵgd is given in Eq. (38) and the 2� 12 matrix ½cs� is given by

½cs�T ¼
1

4

�ð1� ZÞ �ð1� xÞ

0 �ð1� xÞ

1� Z 0

�ð1þ ZÞ 1� x

0 �ð1� xÞ

1þ Z 0

1� Z �ð1þ xÞ

0 �ð1þ xÞ

1� Z 0

1þ Z 1þ x

0 �ð1þ xÞ

1þ Z 0

2
6666666666666666666666664

3
7777777777777777777777775

T

. (47)

Using Eqs. (46) and (47), we may write the stiffness matrix due to shear ½ks
�d as

½ks
�d ¼

Z
Dd

½cs�T½Bs�½cs�dx, (48)

where ½Bs� is given in Eq. (26b).
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3.2.2. Inversion of the Green matrix

We can solve simultaneous Eqs. (36) and (32) for either ŵ and f̂. In order to solve for ŵ, we substitute Eq. (36) into

Eq. (32) and obtain the linear equation

fb½Kf þKs� þ ½M� � o2M� þM�ðM� � o2GÞ�1Ggŵ ¼ ioM�ðM� � o2GÞ�1M�f̂
In
. (49)

We notice from Eq. (16) (which corresponds to Eq. (36)) that the Green’s function is only applied to the displacement w

and f. Therefore, in the computation of Eq. (49), matrices M� and G are non-zero only on the components that

correspond to w and f of the nodes. Moreover, the location of these non-zero entries are the same for both matrices.

The result of computing ½M� � o2G� is a matrix with non-zero entries at ð3m� 2; 3n� 2Þ for m; n ¼ 1 . . . q. To invert

this, we use transformation matrices to obtain an upper left matrix, which we can invert. This method can be found in

textbooks such as Landesman and Hestenes (1992).

First, we introduce a permutation 3q� 3q matrix P, with non-zero entries located at ðm; 3n� 2Þ, that transforms

½M� � o2G� into an upper left matrix ½PðM� � o2GÞPT�. Then, this upper left matrix is transformed into a full matrix ~G
by the following equation:

~G ¼ UTPðM� � o2GÞPTU, (50)

where U is a matrix with columns containing the basis of the range of ðM� o2GÞ (Landesman and Hestenes, 1992).

Finally, since ~G is invertible, we can obtain the inverse of ½M� � o2G� by applying the permutation matrix P to ~G
�1
.

This gives us

ðM� � o2GÞ�1 ¼ PT ~G
�1
P. (51)
4. Results

4.1. Convergence study

Before we begin validating the present method, we first show that the natural frequencies of a plate with free-edges

agree with known results (Liu et al., 1991; Liew et al., 1993). The natural frequencies of a Kirchhoff plate are obtained

by solving the following eigenfunction equation:

Kŵi ¼ liMŵi, (52)

where li ¼ o2ðg1=bÞ and matrices K and M are the stiffness and the mass matrix corresponding to a Kirchhoff plate,

respectively. Similarly, the eigenfunction equation for a Mindlin plate is

ðKf þKsÞŵi ¼ liMŵi, (53)

where Kf , Ks, and M are given in Eqs. (33) and (34).

For natural frequencies
ffiffiffiffi
li

p
, we use a square plate of area 1 and vary the thickness h to follow Liu et al. (1991). The

results for the case n ¼ 0:3 are given in Table 1 where the Kirchhoff plate is discretised using 100 elements and the

Mindlin plate is discretised using 900 elements, since we use fourth order elements for Kirchhoff solution and linear

elements for the Mindlin solution. Results for the Kirchhoff plate agree with those by Liu et al. (1991) for a freely

vibrating plate. Results for the Mindlin analysis agree with those by Liew et al. (1993) (note that the cited frequencies

are multiplied by p2).
Table 1

Comparison of the first four non-zero natural frequencies
ffiffiffiffi
li

p
of a Kirchhoff and a Mindlin plate for different plate thicknesses

ffiffiffiffi
li

p
Kirchhoff Mindlin

h ¼ 1=100 h ¼ 1=10 h ¼ 1=5

i ¼ 1 13.4738 13.0087 12.7128 11.3738

i ¼ 2 19.6024 19.1400 18.8977 16.9228

i ¼ 3 24.2835 24.4395 23.8492 21.3645

i ¼ 4 34.8010 33.6219 31.2146 27.0614
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Next, we compare the results of the present method (denoted by method M) with those computed using the higher-

order FE–BE-Kirchhoff plate method (denoted by method K) by Wang and Meylan (2004). For the comparison, a

square plate of area 16, h ¼ 0:01, b ¼ 0:01, and g1 ¼ h, g2 ¼
1
12

h2g1 on water of infinite depth is used. The wavelength is

l ¼ 2 and the waveangle is y ¼ p=4. The shear correction factor k2 is taken to be 5
6 and the Poisson ratio is n ¼ 0:3. We

use 900 elements for method M whereas method K uses 100 elements. Fig. 3 shows the displacement of the plate (w=A)

calculated using methods M and K. The displacement calculated using method M is slightly larger in magnitude than
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Fig. 3. Comparison of real (1st row) and imaginary part (2nd row) of the plate displacement calculated using method M (left) and

method K (right).
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Fig. 4. Comparison of bending moments Mxx calculated using method M (left) and method K (right) for the indicated plate thickness.

Plate and water properties are the same as in Fig. 3.
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that of method K since the condition imposed on the plate rotations in the Mindlin plate theory is less stringent than the

Kirchhoff plate theory. However, as h! 0, the solutions converge to each other, as discussed below.

We now compare the moments and shear forces for methods K and M. For method K, the moments and shear forces

involve the second and the third derivatives of the displacement w. In order to ‘match’ the moments and shear forces

calculated using method M, we use the same number of elements for both methods. However, despite agreeing on

displacements, the moments and shear forces calculated using method K are inaccurate. This inaccuracy is shown in

Figs. 4–6, where the moments and shear forces of the plate with the same parameters as in Fig. 3 are calculated for

h ¼ 0:01 and 0:1 using methods K and M. The moments from both methods, as shown in Figs. 4 and 5, only agree for a

relatively small thickness h ¼ 0:01. However, for a thicker plate, the moments and forces from method K begin to

diverge from those given by method M; in particular, the solutions from method K lose the smoothness that is required
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Fig. 5. Caption the same as Fig. 4 except for twisting moment Mxy.
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since the moments and shear forces are continuous functions. As shown in Fig. 6, the shear forces from method K are

erroneous. This problem has been addressed in Wang et al. (2001).

To understand the degree of similarity between methods K and M, we vary the discretisation size in method M and

check whether the displacement, moments, and shear forces converge to the results from method K as h! 0. We take

the element size to be proportional to the wavelength. This is so that we can capture the oscillation of the waves as well

as the plate. For a square plate, we relate the element-length characteristic a to the wavelength l by the equation

a ¼ cl, (54)

where 0oco1 is the constant of proportionality.

For the comparison of methods M and K, relative error �ðf Þ is defined as

�ðf Þ ¼

Z
D

jf ðMÞ � f ðKÞj

jf ðKÞj
dA, (55)

where f can be w, Mxx, Mxy, or Qx and the superscript indicates the method used. We assume that results computed

using method K with c ¼ 1
25
are sufficiently close to the actual solution and use this as a reference. The plate thickness h

is taken to be 0:1, 0:01 and 0:001 and the mass constant is set to be g1 ¼ h with g2 ¼
1
12

h2g1. Tables 2–4 show that the

displacement, bending moments, and twisting moments of method M converge to the solutions of method K as we

decrease the thickness h. However, since the shear forces computed by method K are incorrect, we see large errors in

Table 5. Moreover, by comparing columns corresponding to h ¼ 0:01 and 0:001, we notice that the errors in the

moments Mxx and Mxy are rather similar. This is because the results for h ¼ 0:01 and 0:001 are very close to each other.

Therefore, h ¼ 0:01 might be said to be the limit before which the plate thickness becomes significant.

4.2. Results for displacement, moments, and shear forces in a rectangular plate

We present the results for a rectangular plate of area 4LB ¼ 16 with L=B ¼ 2 (i.e. L ¼ 2
ffiffiffi
2
p

and B ¼
ffiffiffi
2
p

). The results

are computed using method M for two different plate thickness h ¼ 0:01 and 0:1 with water depth H ¼ 0:5 (using Eq.

(17)) and H !1 (using Eq. (18)). We adopt the stiffness constant b ¼ 0:01, the mass constant g1 ¼ h and g2 ¼
1
12

h2g1,
the Poisson ratio n ¼ 0:3, the shear correction factor k2 ¼ 5

6
, the wavelength l ¼ 2, and the waveangle is y ¼ p=4.
Table 2

Relative error �ðwÞ of displacements computed by methods M and K

c Number of elements h

0.1 0.01 0.001

1
5

100 1:1902� 10�1 3:4477� 10�2 2:8220� 10�2

1
10

400 1:1814� 10�1 1:6568� 10�2 7:2455� 10�3

1
15

900 1:1822� 10�1 1:3929� 10�2 3:2864� 10�3

1
20

1600 1:1824� 10�1 1:3193� 10�2 2:2222� 10�3

1
25

2500 1:1825� 10�1 1:2880� 10�2 1:8743� 10�3

Table 3

Relative error �ðMxxÞ of bending moments computed by methods M and K

c Number of elements h

0.1 0.01 0.001

1
5

100 1:5789� 10�1 9:4177� 10�2 9:5531� 10�2

1
10

400 1:4852� 10�1 5:0502� 10�2 5:3258� 10�2

1
15

900 1:4639� 10�1 3:6230� 10�2 3:8620� 10�2

1
20

1600 1:4811� 10�1 3:2549� 10�2 3:4757� 10�2

1
25

2500 1:5629� 10�1 3:0426� 10�2 3:0221� 10�2
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Table 5

Relative error �ðQxÞ of shear forces computed by methods M and K

c Number of elements h

0.1 0.01 0.001

1
5

100 1:0276� 100 6:7120� 10�1 6:4788� 10�1

1
10

400 9:4180� 10�1 5:6770� 10�1 5:4276� 10�1

1
15

900 8:8987� 10�1 5:1998� 10�1 4:9600� 10�1

1
20

1600 9:0052� 10�1 5:2047� 10�1 4:9626� 10�1

1
25

2500 8:8903� 10�1 5:0011� 10�1 4:7555� 10�1

Table 4

Relative error �ðMxyÞ of twisting moments computed by methods M and K

c Number of elements h

0.1 0.01 0.001

1
5

100 1:5756� 10�1 4:8603� 10�2 4:7554� 10�2

1
10

400 1:3437� 10�1 1:7914� 10�2 1:9953� 10�2

1
15

900 1:3377� 10�1 1:1548� 10�2 1:3624� 10�2

1
20

1600 1:3453� 10�1 9:3821� 10�3 1:0755� 10�2

1
25

2500 1:3525� 10�1 8:4957� 10�3 9:0843� 10�3
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Fig. 7. Real part of the displacement of a rectangular plate of area 16 with L=B ¼ 2 and given h.
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Figs. 7–10 show the real part of the displacement w=A, the bending moment Mxx, the twisting moment Mxy, and the

shear force Qx, respectively.

As shown in Figs. 8–10, it may be seen that the maximum values of the stress resultants plotted are increasd in the

shallower water case. However, it should be noted that the difference in the plate thicknesses significantly affects the

response, in particular, in terms of the moments and shear forces. This shows that it is important to account the plate

thickness to obtain accurate results, in particular of moments and shear forces.
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Fig. 8. Absolute value of the bending moment Mxx for the same configuration as Fig. 7.
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Fig. 9. Absolute value of the twisting moment Mxy for the same configuration as Fig. 7.
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5. Conclusion

Motivated by the need to obtain accurate stress resultants for checking the strength and for design purposes, we have

developed a method for computing hydroelastic responses of a floating elastic plate using the Mindlin plate theory. This

theory is chosen because it accounts for the effects of transverse shear deformation and rotary inertia of the plate, which

are neglected in the Kirchhoff plate theory. These effects can be substantial in certain cases, for example high frequency

waves (short wavelengths as compared to the characteristic length of the floating structure—a feature of VLFS).

Moreover, in the Kirchhoff plate theory, the three free-edge boundary conditions are too many, and are thus reduced to

two by imposing that the sum of qMns=qn and Qn is zero. These are unchanged in the Mindlin plate theory. Another

reason for using the Mindlin plate theory is that the stress resultants depend, at most, on the first derivatives of the plate
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Fig. 10. Absolute value of the shear force Qx for the same configuration as Fig. 7.
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displacement and rotations, unlike the Kirchhoff plate theory which depends on the third derivatives of the

displacement.

Mathematically, unlike the Kirchhoff plate theory where the plate motion is governed by a biharmonic equation

acting on the displacement, the Mindlin plate theory uses three simultaneous equations involving the displacement as

well as two rotations about the x and y axes. However, the conventional way of coupling the plate and the water motion

using a hybrid FE–BE method, e.g. Wang and Meylan (2004), is still applicable, that is by solving the plate motion

using the FEM through the variational equation for the plate and then solving the integral equation representing the

water velocity potential using the FEM shape function. In this case we chose a four-node linear serendipity shape

function for a rectangular element. Yet it must be noted that the chosen shape function gives inaccurate approximation

of the strain functions. Therefore, the strain must be obtained by interpolating it around the edges of the rectangular

element. We compared the results with the known ones from Wang and Meylan’s FE–BE method with a thin plate.

Though the displacements agreed well between the two methods, the moments agreed less as h increases. Moreover, the

shear forces of both methods did not agree. This reflects the limitation of method K in calculating the moments and

shear forces for thicker plate.

The present method can be improved in several ways. One is to use quadrilateral elements instead of restricting the

elements to rectangles, and thus allowing the elements to fit the shape a plate of arbitrary geometry. Rectangular

elements are restricted at the edge of the plate and, hence, fails to satisfy the specified boundary conditions imposed on

the moments and shear forces. The method can also be improved by choosing a higher-order shape function, e.g. based

on eight-noded elements.
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Kirchhoff, G., 1850. Über das Gleichgewicht und die Bewegung einer Elastischen Scheibe. Journal für de Reine und Angewandte

Mathematik 40, 51–58.



ARTICLE IN PRESS
C.D. Wang, C.M. Wang / Journal of Fluids and Structures 24 (2008) 1042–1057 1057
Landesman, E.M., Hestenes, M.R., 1992. Linear Algebra for Mathematics, Science and Engineering. Prentice-Hall, New Jersey.

Liew, K.M., Xiang, Y., Kitipornchai, S., 1993. Transverse vibration of thick rectangular plates—I. Comprehensive sets of boundary

conditions. Computer & Structures 49, 1–29.

Liew, K.M., Wang, C.M., Xiang, Y., Kitipornchai, S., 1998. Vibration of Mindlin Plates—Programming the p-Version Ritz Method.

Elsevier Science Ltd., The Netherlands.

Linton, C.M., 1999. Rapidly convergent representation for Green’s function for Laplace’s equation. Proceedings of the Royal Society

of London A 455, 1767–1797.

Liu, W.K., Zhang, Y., Ramirez, M.R., 1991. Multiple scale finite element methods. International Journal for Numerical Methods in

Engineering 32, 969–990.

Mei, C.C., 1982. The Applied Dynamics of Ocean Surface Waves—Advanced Series on Ocean Engineering. World Scientific,

Singapore.

Meylan, M.H., 2002. The wave response of ice floes of arbitrary geometry. Journal of Geophysical Research—Oceans 107 (C1), 1–15.

Mindlin, R.D., 1951. Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. Journal of Applied Mechanics

18, 31–38.

Squire, V.A., Duggan, J.P., Wadhams, P., Rottier, P.J., Liu, A.J., 1995. Of ocean waves and sea ice. Annual Review of Fluid

Mechanics 27, 115–168.

Stoker, J.J., 1957. Water Waves. Interscience Publishers Inc., New York.

Tayler, A.B., 1986. Mathematical Models in Applied Mathematics. Clarendon Press, Oxford.

Utsunomiya, T., Watanabe, E., Eatock Taylor, R., 1998. Wave response analysis of a box-like VLFS close to a breakwater. In: 17th

International Conference on Offshore Mechanics and Arctic Engineering, ASME, OMAE98-4331, pp. 1–8.

Wang, C.D., Meylan, M.H., 2004. A higher order method for the wave forcing of a floating thin plate of arbitrary geometry. Journal of

Fluids and Structures 19, 557–572.

Wang, C.M., Xiang, Y., Utsunomiya, T., Watanabe, E., 2001. Evaluation of modal stress resultants in freely vibrating plates.

International Journal of Solids and Structures 38, 6525–6558.

Watanabe, E., Utsunomiya, T., Wang, C.M., 2004. Hydroelastic analysis of pontoon-type VLFS: a literature survey. Engineering

Structures 26, 245–256.

Watanabe, E., Utsunomiya, T., Wang, C.M., 2006. Benchmark hydroelastic responses of a circular VLFS under wave action.

Engineering Structures 28, 423–430.

Wehausen, J., Laitone, E., 1960. Surface waves. In: Handbuch der Physik, Fluid Dynamics III, vol. 9. Springer, Berlin.

Zienkiewicz, O.C., 1977. The Finite Element Method, third ed. McGraw-Hill, London.


	Computation of the stress resultants of a floating Mindlin plate in response to linear wave forces
	Introduction
	Equations of plate and water motion
	Equations of plate motion
	Nondimensionalisation
	Reduction to single frequency problem

	Equations of water motion

	Numerical solution
	Application of Finite Element Method
	Solution for coupled plate-water motion
	Computation of stiffness matrix due to shear
	Inversion of the Green matrix


	Results
	Convergence study
	Results for displacement, moments, and shear forces in a rectangular plate

	Conclusion
	References


